MIMO OTA in a Small Anechoic Chamber

NSF EARS Meeting
October 8-9, 2013

NSF ID: 1217558

Dr. Nicholas Kirsch, University of New Hampshire
Nicholas.Kirsch@unh.edu
Fanny Mlinarsky, octoScope
fm@octoscope.com
Motivation

• NSF Enhancing Access to the Radio Spectrum (EARS)
 - Wireless system tests, measurements, and validation

• Next generation wireless standards use multiple antenna systems to increase connectivity and spectral efficiency.

• Certification of next generation devices is an expensive and time consuming process.
Multipath Channel

Multipath and Doppler fading in the channel
MIMO OTA Test Methods

- MIMO OTA test metrics are being standardized by 3GPP [1] and CTIA [5]

- Large anechoic chamber
 - DUT is surround by multiple antennas inside the chamber
 - Multi-cluster 2D measurements on a plane

- Small anechoic chamber
 - Single cluster 3-D measurements indicating DUT’s MIMO performance vs. orientation
 - 2-Stage method whereby antennas are measured in the chamber and then modeled using a traditional conducted fader

- Reverberation chamber
 - Uniform isotropic (3D) propagation is achieved via reflections from metal walls and mechanical stirrers
 - An external channel emulator is used to provide power delay profiles, Doppler and multipath fading
Comparison of MIMO-OTA Methods

<table>
<thead>
<tr>
<th></th>
<th>Full sized anechoic</th>
<th>Reverberation chamber</th>
<th>Single cluster anechoic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Provides 2D performance information with 360° multi-cluster propagation</td>
<td>• Less expensive and smaller than full sized anechoic chamber</td>
<td>• Provides 3D performance information</td>
</tr>
<tr>
<td></td>
<td>• Requires a lot of space</td>
<td>• No information on where the nulls are in the antenna field</td>
<td>• Supports single cluster anechoic and 2-stage methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Takes little space</td>
</tr>
</tbody>
</table>
Conventional Chamber MIMO-OTA Testbed

- Base Station Emulator
- Channel Emulator
- RF Amplifier and Calibration Subsystem

Laplacian PAS

\[\text{Laplacian spread} \]

-180° 0° 180°
Small Chamber MIMO-OTA Testbed

- Base Station Emulator
- Channel Emulator
- RF Amplifier and Calibration Subsystem

Single cluster UMa/UMi models
NSF Phase I: Accomplishments

• Goal is to analyze accuracy of the measurement as a function of angular spread of test antennas and number of antennas

• Developed synthesis algorithm to produce Laplacian PAS clusters in the test zone based on:
 - The wavelength used in the measurement
 - Test zone radius
 - Geometry of chamber and probe locations
 - Shape of probe field

• Algorithm calculates error of synthesized field vs. theory – Reflectivity [8]

PAS = power angular spread
Method – Plane Wave Synthesis

• Widely used *spherical wave theory* models 3D antenna radiation [8]

• *Plane wave synthesis* technique is based on spherical wave theory [8] and enables synthesis of Laplacian PAS cluster field

• Team created synthesis algorithm to generate Laplacian PAS
Field synthesis

• From spherical plane wave theory we can reduce the number of probe antennas

$$K = \frac{4\pi r}{\lambda} + 1$$

• With plane wave synthesis, a target field can be approximated

$$E_{\text{Target}}(r_0, \phi) \approx E_{\text{Synth}}(r_0, \phi) = \sum_{n=1}^{N} c_n E_n(r_0, \phi)$$

• Error or reflectivity between the desired and synthesis

$$e(r_0) = 20 \log_{10} \left(\max_{0^\circ \leq \phi < 360^\circ} \left(\frac{\left| E_{\text{Synth}}(r_0, \phi) - E_{\text{Target}}(r_0, \phi) \right|}{\max_{0 < r \leq r_0, 0^\circ \leq \phi < 360^\circ} \left| E_{\text{Target}}(r, \phi) \right|} \right) \right)$$
Synthesized electric field levels across the test zone agree with the theoretical field levels for the desired Laplacian PAS.

Note: Results are shown for a single instance in time
E-field at Max Test Zone Boundary

Synthesized electric field levels around the circumference of the test zone agrees with the theoretical field levels for the desired Laplacian PAS

Note: Results are shown for a single instance in time
E-field Error vs. Test Zone Radius

Reflectivity (error) is < 20dB up to 0.1m from the center of the test zone.

Reflectivity indicates the maximum E-field error at a given radius relative to the peak field over the entire test zone plane.

Note: Results are shown for a single instance in time.
Simulation Technique

• Simulate the generation of a target electromagnetic field in a test zone with different small anechoic chamber dimensions/parameters.

• The target EM field is a Laplacian-distributed Power Azimuthal Spectrum with a random phase a each angle $e^{j2\pi\beta}$ where $\beta=[0…1]$.

• Monte Carlo simulations to determine the reflectivity in the test zone with 95% and 0.25 dB error.
Simulation Configuration Diagram

<table>
<thead>
<tr>
<th>Number of antennas</th>
<th>Chamber height (m)</th>
<th>Chamber width (m)</th>
<th>PAS (° in degrees)</th>
<th>Frequency (GHz)</th>
<th>Test zone radius (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,4,5,6</td>
<td>1</td>
<td>0.95, 1.5 2</td>
<td>50,70,90</td>
<td>0.7, 2.4, 5.9</td>
<td>10,15,20</td>
</tr>
</tbody>
</table>
Simulated Reflectivity vs. # Probes, r0, width

CDF of Reflectivity for Two Configurations

- \(r_0 = 10 \text{cm}, N = 6, w = 2 \text{m} \)
- \(r_0 = 15 \text{cm}, N = 6, w = 2 \text{m} \)
- \(r_0 = 20 \text{cm}, N = 6, w = 2 \text{m} \)
- \(r_0 = 10 \text{cm}, N = 3, w = .95 \text{m} \)
- \(r_0 = 15 \text{cm}, N = 3, w = .95 \text{m} \)
- \(r_0 = 20 \text{cm}, N = 3, w = .95 \text{m} \)

Freq = 700 MHz
\(\sigma = 70^\circ \)
Summary of Simulation Results

• More probes required for bigger test zone radius to maintain the same accuracy (reflectivity)

• For a small laptop or pad sized test zone, 20cm test zone radius, it appears at least 6 probes are required to keep the error (reflectivity) below -15 dB

• Constraining the range of phase variation of the waveform will make this feasible

• Our effort has created a tool to help us optimize error vs. number of probes
Computation EM Simulations

- Field based simulations do not account for reflections and near-field effects
- Create a chamber model to analyze the performance of a realistic system
- Vacuum results are comparable
- Reflections and NF must be accounted for

<table>
<thead>
<tr>
<th>r_0 (m)</th>
<th>N</th>
<th>Lap. σ (deg)</th>
<th>Freq</th>
<th>Width (m)</th>
<th>Matlab, vacuum</th>
<th>HIFSS, vacuum</th>
<th>HIFSS, chamber</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mean ref. (dB)</td>
<td>std. dev. ref. (dB)</td>
<td>mean ref. (dB)</td>
</tr>
<tr>
<td>0.1</td>
<td>6</td>
<td>25</td>
<td>700 MHz</td>
<td>2.0</td>
<td>-36.7199</td>
<td>2.4177</td>
<td>-36.2777</td>
</tr>
<tr>
<td>0.1</td>
<td>6</td>
<td>35</td>
<td>700 MHz</td>
<td>2.0</td>
<td>-34.6884</td>
<td>3.5247</td>
<td>-34.2675</td>
</tr>
<tr>
<td>0.1</td>
<td>6</td>
<td>45</td>
<td>700 MHz</td>
<td>2.0</td>
<td>-30.7851</td>
<td>4.5645</td>
<td>-30.3239</td>
</tr>
<tr>
<td>0.1</td>
<td>3</td>
<td>25</td>
<td>2 GHz</td>
<td>0.95</td>
<td>-17.1502</td>
<td>3.6965</td>
<td>-17.3265</td>
</tr>
<tr>
<td>0.1</td>
<td>3</td>
<td>35</td>
<td>2 GHz</td>
<td>0.95</td>
<td>-14.3711</td>
<td>3.6514</td>
<td>-13.4716</td>
</tr>
<tr>
<td>0.1</td>
<td>3</td>
<td>45</td>
<td>2 GHz</td>
<td>0.95</td>
<td>-12.2670</td>
<td>3.5722</td>
<td>-11.3945</td>
</tr>
</tbody>
</table>
Verifying Laplacian Field

Fig. 3. The 2-D multi-probe system calibration setup of eight probes. The red crosses are the possible locations of the calibrating probe placed equidistantly with constant ϕ intervals ($\Delta \phi$) around the test zone of radius r_0.

Source: “Calibration Procedure for 2-D MIMO Over-The-Air Multi-Probe Test System”, by D. Parveg et al
Contributions

• Document for the CTIA MIMO-OTA Subgroup
• Submission to IEEE Transactions of Instrumentation and Measurements
• Dr. Nicholas Kirsch, University of New Hampshire
 • Nicholas.Kirsch@unh.edu

• Fanny Mlinarsky, octoScope
 • fm@octoscope.com
References

1) 3GPP TR 37.977: “Verification of radiated multi-antenna reception performance of User Equipment (UE)”

2) 3GPP TS 34.114: “User Equipment (UE) / Mobile Station (MS) Over The Air (OTA) Antenna Performance Conformance Testing”

3) Charles Capps, “Near field or far field?”, EDN, Aug 16, 2001

4) CTIA, “Test Plan for Mobile Station Over the Air Performance - Method of Measurement for Radiated RF Power and Receiver Performance”, Revision 3.1, January 2011

5) CTIA, DRAFT “Test Plan for 2x2 Downlink MIMO Over-the-Air Performance”

6) Afroza Khatun et al, “Dependence of Error Level on the Number of Probes in Over-the-Air Multiprobe Test Systems”

7) R4-131673 Measurement uncertainty evaluation of multiprobe method, Nokia Corporation, Anite Telecoms Ltd, Spirent Communications, RAN4#66bis, Chicago

9) IEEE, 802.11-03/940r4: TGn Channel Models; May 10, 2004
References

9) Schumacher et al, "Description of a MATLAB® implementation of the Indoor MIMO WLAN channel model proposed by the IEEE 802.11 TGn Channel Model Special Committee", May 2004

10) IEEE 802.11-09/0308r12, “TGac Channel Model Addendum”, March 18, 2010

11) IEEE, 11-09-0334-08-00ad-channel-models-for-60-ghz-wlan-systems

12) Schumacher et al, "From antenna spacings to theoretical capacities - guidelines for simulating MIMO systems"

14) 3GPP TR 25.996, "3rd Generation Partnership Project; technical specification group radio access networks; Spatial channel model for MIMO simulations“

16) CITA MOSG130705, “Action Item Plan for Defining EUT Size and Test Zone for the Multi-Probe Anechoic Chamber Methodology”, by Anatoliy Ioffe et al.

17) “Calibration Procedure for 2-D MIMO Over-The-Air Multi-Probe Test System”, by D. Parveg et al